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Tawan is an active mountain belt created by the oblique collision of
the northern Luzon arc with Asia. Late Pliocene extensional collapse
of the northern Taiwan mountain belt (NTMB) was accompanied
by magmatism that formed the Northern Tawan Volcanic Zone
NTVZ; 2-8—0-2 Ma). The geochemical characteristics of the
NTVZ magmas can thus provide constraints both for the mantle
source composition and the geodynamic processes operating i the
late orogenic stage of the region. The NTVZ volcanic rocks consist
domanantly of calc-alkaline andesites and basalts, along with sub-
ordinate but heterogeneous lavas including low-K, shoshonitic and
ultrapotassic magmas. From the NE to the SW in the NTVZ, the
magmas show systematic compositional variations from low-K to
calc-alkaline and then shoshonitic. This spatial geochemical varia-
tion, characterized by southwesterly increase in potassium and
imcompatible trace elements, appears to be subparallel to the south-
western part of the modern Ryukyu subduction system. Sr—Nd
isolope ratios of the NTVZ wolcanic rocks (% Sr/%0Sr =

0-70376—0-70551; "PNd/THNd =~ 0-51259—0-51301)
suggest that two mantle source components are involved in the
magma generation, the asthenosphere and metasomatized subconti-
nental lithospheric mantle. These two components are represented by
the 2-6 Ma Maenhuayu hagh-Mg basaltic andesites and the 0-2 Ma
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Tsaolingshan high-Mg potassic lavas, respectively. The latter are
interpreted to be the products of small-degree melting of a phlogopite-
bearing, harzburgite lithospheric mantle source metasomatized
recently by the nearby Ryukyu subduction zone processes. The
Sr—Nd—Pb isotope systematics and specific trace-element ratios of
the NTVZ volcanic rocks suggest that melts derived from subducted
sediments and fluids released from slab dehydration reactions were
both wnwolved in metasomatizing this mantle source. The unique
spatial geochemical variation of the NTVZ volcanic rocks can be
successfully modelled using variable degrees of partial melting of
the mantle source regions, coupled with mixing of different melt
components from depleted asthenospheric and metasomatized
lthospheric mantle components beneath indwidual volcanic fields.
1t is inferred that mixing of melts from specific mantle components
and the degree of partial melting are spatially and temporally related
lo the lectonic evolution of the northern Taiwan region, and not
simply due divectly to subduction zone processes. The overall NTVZ
geochemical characteristics can be explained by various degrees of
melling within an ascending region of the asthenospheric mantle,
triggered by extensional collapse of the NTMB, and interaction of
these melts with overlying fluid- and sediment-modified lLithospheric
mantle.
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INTRODUCTION

The tectonic evolution of orogenic belts is typically
marked by changes in the composition of the associated
magmatism (e.g. Harris et al., 1986). Post-collisional mag-
matism is one of the common features of many orogens
around the world, and may indicate that the orogen is
in the process of collapsing (Dewey, 1988). Petrogenetic
studies of post-collisional magmatism not only provide
constraints on the geodynamic processes responsible for
the cessation of collision and onset of extensional col-
lapse, but also reveal changes in magma source regions
associated with such processes. In addition, one of the
prevailing characteristics of post-collisional magmatism is
its subduction-related geochemical characteristics despite
subduction processes having been terminated as a result
of continental collision. The subduction-related signa-
tures are attributed to metasomatism by slab-derived
fluids of the mantle lithosphere prior to collision (Pearce
et al., 1990; Turner e al., 1992, 1993, 1996; Platt &
England, 1993). Thus, the geochemical characteristics
of calc-alkaline post-collisional magmatism allow the
evaluation of subduction-related metasomatism of their
mantle source.

Taiwan is an active mountain belt created by the
oblique collision between the northern Luzon arc and
the Asian continent (see Teng, 1990). Despite continuing
plate convergence in central and southern Taiwan,
extensional collapse has occurred in the northern part
of the mountain belt since Plio-Pleistocene times. Accord-
ingly, Teng (1996) proposed a model for the orogenic
evolution of northern Taiwan, from mountain building
induced by collision to subsequent extensional collapse,
lasting only a few million years. Wang et al. (1999)
proposed that post-collisional extension in the northern
Taiwan mountain belt (NTMB) caused the magmatism
of the Northern Taiwan Volcanic Zone (NTVZ) (Fig. 1).
Compared with other collision orogens also character-
1zed by extensional collapse (Dewey, 1988; Platt & Visser,
1989; Malavielle, 1993), northern Taiwan may provide
one of the most active examples of such a tectonic pro-
cess. In this study, we aim to: (1) investigate the petrogen-
esis of the post-collisional magmatism, which displays
distinctive spatial and temporal geochemical variations
indicative of changes in magma source region; (2) explore
metasomatism of the mantle source by different subduc-
tion components, e.g. hydrous fluids and subducted sedi-
ments; (3) track the evolution of the mantle source region
during the late orogenic stage; (4) show how the geo-
chemical trends within individual magmatic episodes
can constrain the nature of geodynamic processes.
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REGIONAL GEOLOGY: THE NTVZ

Located at the Asian continental margin at the boundary
of the Philippine Sea plate, the island of Taiwan is not
only a collision zone but also a transform region between
the opposing Luzon and Ryukyu subduction systems
(Fig. 1). The Ryukyu subduction and the resultant
Ryukyu arc—trench system, active since the Paleogene,
are associated with the development of a back-arc basin,
the Okinawa Trough, which has a distinct topography
(>2000 m below sea level; Fig. 1) and a strong curvature.
Driven by the NW movement of the Philippine Sea plate,
the northern segment of the Luzon arc is generally
believed to have collided with the Asian continental mar-
gin at 10Ma (Teng, 1990). The Taiwan mountain belt,
composed of deformed strata of both the Asian continent
and the Luzon arc, reaches a maximum altitude near
4000m in its central part (Fig. 1). Whereas collisional
tectonism is still continuing, as evidenced by the promi-
nent crustal shortening in central and southern Taiwan
(e.g. Angelier et al., 1986; Yu & Chen, 1994), structural
and seismological data demonstrate that the northern
part of the Taiwan mountain belt has been subjected to
extensional deformation in the Quaternary (Suppe, 1984;
Lee & Wang, 1988; Yeh et al., 1991). Thus, Teng (1996)
proposed that extensional collapse of the NTMB took
place in Plio-Pleistocene times. Consequently, the topo-
graphic elevation of the orogen reduces from near
4000 m in central Taiwan to rolling hills in the north-
eastern part and eventually becomes submerged in the
offshore area farther to the NE (Fig. 1).

The NTVZ comprises two major onshore volcanic
fields, the Tatun and Keelung Volcano Groups (TTVG
and KLVG), and several offshore volcanoes (Fig. 1). The
NTVZ volcanic rocks consist dominantly of andesites
with calc-alkaline geochemical characteristics, similar to
those commonly observed in convergent-margin lavas
(e.g. Gill, 1981). Thus, they have conventionally been
regarded as the westernmost part of the Ryukyu volcanic
arc (Chen, 1990; Juang, 1993; Chung et al., 19956; Teng,
1996). The conventional view was first questioned by
Chen (1997), who suggested an extensional rather than
a subduction-related tectonic regime for magma genera-
tion. To accommodate available geophysical and geo-
logical evidence, Wang et al. (1999) proposed that the
NTVZ resulted from post-collisional extension related
to the late Pliocene orogenic collapse of the NTMB.
This extension may also account for the reactivation of
the opening of the Okinawa Trough that commenced in
the middle Miocene (Sibuet et al., 1993) but became
inactive after the arc—continent collision in Taiwan.
Reactivated rifting in the Okinawa Trough started pro-
pagating to the SW from ~1-5Ma, with accompanying
development of the westernmost part of the Ryukyu
subduction system towards Taiwan (Chung et al., 2000).
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Fig. 1. Maps showing the regional tectonic setting of Taiwan and the volcanic fields of the NTVZ, modified from Wang et al. (1999, 2002). WBP
indicates the western boundary of the subducting Philippine plate. It should be noted that the NTVZ is currently located ~200km above the
Wadati—Benioff zone. Stippled area represents the Taiwan orogen basement characterized by folded and tilted Tertiary strata (Wageman ¢t al.,
1970; also named southern Taiwan—Sinzi Folded Zone). Lower right inset: tectonic setting of Taiwan. OT, Okinawa Trough; RT, Ryukyu Trench.
Upper left inset: detailed bathymetric map showing the location of the NTVZ. Bold black line indicates the surface projection of the 100 km contour

of the depth to the Wadati—Benioff zone (Sibuet ¢t al., 1998).

Radiometric age data show that the NTVZ volcanism
commenced at ~2-8—2-6 Ma and lasted throughout the
Quaternary. Figure 2 summarizes existing age data for
the NTVZ volcanic rocks, carried out by various dating
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methods including fission track, K—Ar and Ar—Ar. The
age data suggest that the earliest eruptions occurred in
the Sekibisho (SBS) and Mienhuayu (MHY) islets and
the TTVG around 2-8—2-6 Ma, with the youngest ages
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Fig. 2. Radiometric age data for each volcanic field in the NTVZ. Data sources include: fission-track dating (FTD) from Liu et al. (1986), Liu (1987)
and Wang & Chen (1990); K—Ar ages from Juang (1988, 1993), Shinjo et al. (1991) and Tsao (1994); Ar—Ar ages from Lee (1996), Wang et al. (2000)
and Chung ¢t al. (20015). It should be noted that eruption ages of the NTVZ display random distribution relative to their geographical locations.
Abbreviations of individual volcanic fields: TLS, Tsaolingshan; KYS, Kuanyinshan; TTVG, Tatun Volcanic Group; KLVG, Keelung Volcanic
Group; PCY, Pengchiayu; MHY, Mienhuayu; SBS, Sekibisho; KBS, Kobisho.

around 0-2 Ma in most of volcanic fields. In some local-
ities, however, the volcanic ages might be younger than
0-2 Ma, as dating results are close to or even smaller than
the limit of the dating methods. The age spectrum in
Figure 2 shows a generally random distribution in space
and time, distinct from the southwesterly younging trend
of the NTVZ volcanism argued by some workers (e.g.
Teng et al., 1992; Teng, 1996). This trend, based on
limited geochronological data, was ascribed to south-
westerly propagation of the Ryukyu subduction system
(Teng et al., 1992). However, when more recent age data
(Juang, 1993; Tsao, 1994; Lee, 1996; Wang et al., 2000;
Chung et al., 20015) are included, the alleged trend
disappears (Fig. 2) so that the argument by Teng et al.
(1992) and Teng (1996) is problematic.

SAMPLES AND ANALYTICAL

METHODS

Samples and major-, trace-element and
Nd-Sr isotope methods

Representative volcanic samples were collected from
different localities in the NTVZ for detailed geochemical
investigation, including whole-rock major- and trace-
element, and Sr—Nd—Pb isotope determinations. Geo-
chemical data for the SBS and Kobisho (KBS) volcanic
rocks from Shinjo (1998, and unpublished Pb data, 2003)
and some Nd—Sr isotope data from Chen (1989) are also
included in this paper for comparison. All NTVZ volca-
nic rocks are microscopically porphyritic. Lithology and
phenocryst assemblages are (1) plagioclase 4 olivine £
titanomagnetite for SBS basalts; (2) plagioclase +
olivine + augite for KBS basalts; (3) olivine + bronzite +

plagioclase for MHY basaltic andesites; (4) plagioclase +
olivine 4+ bronzite for Pengchiayu (PCY) basalts;
(5) plagioclase + augite + hornblende + biotite for
KLVG dacites; (6) plagioclase + augite 4 olivine for
TTVG basalts and plagioclase 4 augite 4 hypersthene +
hornblende for andesites; (7) olivine + augite + plagioclase
for Kuanyinshan (KYS) basalts and plagioclase + augite +
hypersthene + hornblende =£ olivine for andesites;
(8) olivine + diopside + phlogopite 4+ Fe—Ti oxide £
leucite for TLS absarokites. Detailed petrographic descrip-
tions and mineral chemical data have been reported in a
number of publications (Chen, 1990; Juang, 1993; Shinjo,
1998; Wang et al., 2000, 2002; Chung et al., 20015), and so
in this paper we focus only on the whole-rock geochemistry
of the NTVZ volcanic rocks.

Powder samples were prepared using a jaw crusher
and a corundum mill. Major-element compositions
were determined by X-ray fluorescence (XRF) using a
Rigaku®™ RIX 2000 spectrometer at the Department of
Geosciences, National Taiwan University. The analytical
uncertainties are generally better than 5% for all ele-
ments (Lee et al., 1997). Loss on ignition was determined
by routine procedures. Powdered samples weighing
about 50 mg were dissolved using a HF-HNOj3 (10:1)
mixture in screw-top Teflon Savillex® for 7 days at
~100°C, followed by evaporation to dryness, refluxing
in 7N HNOg and drying again, and then dissolving the
sample cake in 2% HNOs. An internal standard solution
of 10 ppb Re was added and the spiked dissolutions were
diluted with 2% HNOj to a sample/solution weight ratio
of 1/1000. The internal standard was used for monitor-
ing the signal shift during inductively coupled plasma-
mass spectrometry (ICP-MS) measurements using a
Perkin Elmer® Elan-6000 spectrometer at Guangzhou
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Institute of Geochemistry, the Chinese Academy of
Sciences, China, which has a good stability range within
~10% wvariation (Liu et al, 1996; Li, 1997). Values
recommended for the USGS rock standard BCR-1
(Govindaraju, 1994) were used for data calibrations; the
analytical errors are generally better than 5% for most
trace elements. The samples were dissolved for Sr and Nd
separation using routine cation-exchange column techni-
ques. Sr and Nd isotope ratios were measured using
VG354® and Finnigan MAT 262% mass spectrometers,
respectively, at the Institute of Earth Sciences, Academia
Sinica, Taiwan. Detailed chemical and mass spectro-
metric procedures were described by Chen et al. (1990).
The 1sotopic ratios were corrected for mass fractionation
by normalizing to #Sr/%Sr = 0-1194 and "**Nd/""Nd =
0-7219. Long-term laboratory measurements for SRM
987 Sr and La Jolla (UCSD) Nd standards yield 0-71024
£ 0-00004 (26) and 0-51187 £ 0-00003 (25), respectively.
During the period of the study, measurements for the
NIST standard SRM 987 gave %°Sr/%8Sr = 0-71023 +
0-00001 (20; n = 3), and for the La Jolla (UCSD) Nd
standards gave 0-511867 £ 0-000006 (26; n = 3). The
overall blank contributions were 0-8 ng Sr for about 20 g
Sr and 0-3 ng Nd for about 0-6 pg Nd in the samples.

Double-spike Pb method

Chemical separation of Pb for isotope analysis was
undertaken at the National Taiwan University, Taiwan
and the University of the Ryukyus, Japan. Rock chips
and/or powders were leached with 6N HCl at ~80°C for
30 min. Then they were rinsed with distilled water before
being decomposed with HF and HNOs. The Pb was
separated using standard HBr anion exchange proce-
dures in Teflon columns and the sample solution passed
through the columns twice for purification. All chemical
processes resulted in loss of about 50% of the Pb in chip
samples and 90% in powders, respectively. Two small
aliquots of the purified Pb sample were loaded onto two
single Re filaments used for natural and double-spiked
sample runs separately. A small drop of 2’Pb—2*Ph
double-spike solution and Pb emitter silica gel-H3;PO,
solution, prepared according to Gerstenberger & Haase
(1997), were then added to the aliquot on the mix
run filament. Repeated sucking back and release of
the mixture with the loading pipette ensured a good
sample—spike mixture. Lead isotope measurements
were made on a Finnigan MAT262® mass spectrometer
using static multi-collector mode at the University of the
Ryukyus, Japan. Data acquisition was usually performed
at a filament temperature of about 1050—1150°C and
consisted of four blocks of data per run, with each block
comprising ten 16s integrations (thus, 160s integration
time per block). Lead isotope ratios were corrected
for mass fractionation by the use of a 27Pb—2*Pb
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double-spike method. A new 27Pb—"*Ph double-spike
solution was prepared and calibrated in this study. The
spike calibration is briefly described as follows.

The isotope composition of the newly prepared
207ph—204Ph double spike was calibrated with NIST Pb
standard SRM 982. The standard had been measured in
separate natural and mix runs with the new double
spike for calibrating the isotopic compositions of the
double spike. The isotopic compositions of SRM 982 in
the natural runs (n = 22 in the period of analysis) were
normalized to 2%°Pb/2%Ph = 1-00016, a value recom-
mended by Cameron et al. (1969) and accepted in other
Pb double-spike and triple-spike studies (e.g. Galer &
Abouchami, 1998; Thirlwall, 2000). Data from these
SRM 982 analyses and from double-spiked SRM 982
mix runs (n = 8) were then used to correct for mass
fractionation effect and to determine the isotopic com-
position of the double spike. All calculations were
performed by an iterative technique using an Excel
spreadsheet (Woodhead et al., 1995). The 2**Ph/?"’Pb
was determined to be ~0-9921 in the newly prepared
double-spike solution. Once the double-spike composi-
tion was calibrated it was tested by obtaining the isotope
composition of NIST Pb Standard SRM 981 with the
double-spike method. All mixed samples measured (n =
54) had Q ~ 0-7-0-9 [Q, = 204Pb5pikc/<204Pbspikc +
204Pbsamplc)]. The double-spike calibrated SRM 981 has
the following composition: °Pb/2"Ph = 16-9411 + 42,
207Ph /2 Ph = 154978 £ 52 and *®Pb/?**Pb = 36-7185 +
142 (20), which agrees well with values recently reported
by Galer & Abouchami (1998) and Thirlwall (2000) using
triple-spike and double-spike methods, respectively. The
external reproducibility of the SRM 981 (2SD, 54 ana-
lyses in the period of this study) is 124 ppm for 2°°Pb/
204Ph, 112 ppm for 2°7Ph/?**Pb and 96 ppm for 2%Pb/
204Ph. The overall blank contributions were 0-4 ng Pb for
about 0-2 pg Pb in the samples. Accordingly, high-quality
Pb isotope data were produced for this study using the
double-spike method.

The major- and trace-clement and Sr—Nd—Pb isotopic
compositions of the NTVZ volcanic rocks are presented
in Tables 1 and 2, respectively.

WHOLE-ROCK GEOCHEMICAL
COMPOSITION

Major-element compositions

In a plot of KyO vs SiO, (Fig. 3a), most of the NTVZ
volcanic rocks display calc-alkaline characteristics except
for the SBS and MHY magmas, which are low-K, and
the TLS magmas, which are shoshonitic. Volcanic rocks
from the offshore volcanoes are principally mafic to inter-
mediate, whereas the onshore volcano groups are inter-
mediate to felsic. The mafic rocks (Si1O9 <55 wt %) from
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Table 2: Sr—Nd—Pb isotope compositions for the N'T V.S volcanic rocks

Volcanic field

SBS?

KBS

MHY

PCY

KLVG

TTVG

KYS

TLS

Sample no. &Sr/8Sr “3Nd/Nd Tom' 26pp/204ppy 207pp/204pp 208ppy /204ppy
SBS-1 070406

SBS-2 070414 051289 18-351 15574 38524
SBS-7 0-70376 051284 18-283 15547 38-389
KBS-12 070384 051271 18-408 15:580 38:620
KBS-3? 070398 051271 18-410 15583 38627
KO-4 070396 051272 18-407 15587 38-633
KO-5 18-410 15586 38-640
MHH-01 0-70461 051298

MHY-2 0-70453 051301 18-588 15599 38-729
MHY-3 0-70446 051290

MHY-4 051294 18-602 15-607 38.767
MHY-7 0-70438 051299 18677 15611 38-749
MHY-8 0-70440 051297

MHY-9 0-70447 051293

Pen-20 0-70391 051289

PGU-04 0-70395 051295 18-446 15574 38-535
PGU-05 070404 051297 18-443 15576 38531
TS3 0-70482 051270 374 18-502 15-635 38-830
GML 0-70489 051272 266

CKS5-1 070474 051269 1-89

L-15 0-70496 051270 403

CH-7 0-70430 051282

A3 0-70469 051273 2:63

A-10 070428 051278

A-18 0-70456 051273

A-31 0-70442 051268

A-129 0-70447 051280 18517 15627 38-763
H-B-1 0-70450 051276 18525 15627 38763
K-41 070416 051284 1-00 18-442 15618 38.726
K-64 0-70407 051283 235 18-439 15616 38721
K-99 0-70427 051281 055

K-108 070417 051281 0-49

TLS8 0-70546 051268 1-97 18-450 15628 38775
TLS-18 0-70551 051263 221

TLS-23 0-70543 051266 2:06

TLS-27 051266 2:05

T-16 0-70543 051266 215 18:450 15629 38780
T-20 070542 051264 2:25

T-24 0-70540 051265 2:27

T-30 0-70543 051268 2:20

T-43 0-70546 051266 2:00

T-48 0-70851 051259 248

"Nd modal age assuming derivation from a depleted mantle source with "3Nd/"*Nd = 0-513114 and " Sm/"*Nd = 0-222

gMichard etal., 1985).
Data from Shinjo (1998).

Average analytical 2c errors: +0-00004 for 8 Sr/%Sr; +0-00002 for “3Nd/"*Nd; +0-004 for 2%6Pb/2%Pb; +0-005 for 27Pb/

204pb; +0-014 for 28Pb/2Pb.

the various volcanic fields exhibit a trend of increasing
K5O content and decreasing SiOy content from NE to
SW (Fig. 3a). In a plot of KyO vs NayO (Fig. 3b), most
of the NTVZ volcanic rocks have relatively high K,O

contents, although only the TLS magmas have K,O

contents higher than NayO. The high Ko,O contents in

some onshore volcanic fields with high SiOy and Na,O

contents may result from fractional crystallization;
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Fig. 3. Variation of KO vs SiO (a) and NayO (b) for volcanic rocks from the NTVZ. The series boundaries in (a) and (b) are from Gill (1981) and
Middlemost (1975), respectively. The grey arrow in (a) indicates the trend of spatial geochemical variation. The inset in (b) is a map showing the
distribution of the main volcanic areas and the symbols used in the diagram. (For abbreviations see caption to Fig. 2.)

however, for some of the NTVZ mafic rocks fractional
crystallization is not likely to be the reason for the high
K50 contents (Fig. 3). As shown in Harker diagrams of
CaO, Fey,Os(t), AlyOs, Cr, Sr and La vs MgO (Fig. 4),
there is no significant trend of fractional crystallization for
individual volcanic fields in the NTVZ, except for some
onshore volcanic fields (T'TVG and KYS).

Some N'TVZ volcanic rocks have high Al,O3 contents
(~17-20 wt %) and may be classified as high-Al basalts
(e.g. Chen, 1990). According to the definition of high-Al
basalts by Crawford et al. (1987) (SiO9 <54 wt %; Al,O3
>16-5 wt % and MgO <7 wt %), high-Al basalts occur
in most areas of the NTVZ. All volcanic rocks from the
SBS are high-Al basalts; however, none was found in the

MHY and TLS. The SBS have the lowest Mg number
(~0-5) in the NTVZ, whereas the MHY and TLS are
relatively primitive magmas (Mg number = 0-6 and 0-8,
respectively). The Mg number values for the MHY and
TLS basalts are in equilibrium with the Fo contents of
their olivine phencrysts (Fo = 81 and 90, resepectively)
based on the calculation for olivine—liquid equilibrium
(Roeder & Emslie, 1970).

Trace-element compositions

Mafic rocks from the individual volcanic fields in the
NTVZ have distinctive trace-element characteristics.
The TLS basalts have the highest compatible
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Fig. 4. Variation diagrams of CaO, FeyOs(t), AlyOs, Cr, Sr and La vs MgO, respectively, for volcanic rocks from the NTVZ. The inset shows a
map of the distribution of the main volcanic areas and the symbols used in the variation diagrams.

trace-element contents (N1 ~500 ppm; Cr ~1000 ppm).
This characteristic, together with their major-element
chemistry, is consistent with the TLS magmas being
near-primary magmas. Incompatible trace-element
characteristics are illustrated as chondrite-normalized
rare carth element (REE) diagrams in Fig. 5 and as

primitive mantle-normalized element diagrams in Fig. 6.
The REE patterns of the NTVZ volcanic rocks are light
REE (LREE) enriched, but the extent of enrichment is
variable between the volcanic fields. The SBS and MHY
mafic rocks have the lowest abundances of LREE and
show relatively flat REE patterns, whereas the TLS
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Fig. 5. Chondrite-normalized REE variation diagrams for the NTVZ volcanic rocks. Normalization constants are from Sun & McDonough (1989).
The letters in the legend of each diagram represent the lithology: B, basalt; BA, basaltic andesite; A, andesite; D, diorite.
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Fig. 6. Primitive mantle-normalized trace-element variation diagrams for the NTVZ volcanic rocks. Normalization constants are from Sun &
McDonough (1989).
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Fig. 7. (a) Primitive mantle-normalized trace-element diagrams for representative volcanic rocks for each volcanic field from the NTVZ. It should
be noted that only the mafic members are plotted and therefore KLVG is excluded. (b) Primitive mantle-normalized trace-element variation
diagram for representative MHY high-Mg basaltic andesites in comparison with Miocene intraplate basalts from NW Taiwan (MTIB; Chung et al.,
1994, 19954), high-Mg andesites of Iriomote-jima, southern Ryukyus (IR-HMA; Shinjo, 1999), E-MORB, ocean-island basalt (OIB) and other
NTVZ volcanic rocks. Normalization constants, E-MORB and OIB values are from Sun & McDonough (1989).

basalts are the most LREE enriched. None of the REE
patterns has an obvious negative Eu anomaly, which may
indicate that plagioclase was not a fractionating phase in
the NTVZ volcanic rocks.

The primitive mantle-normalized trace-element pat-
terns of the NTVZ volcanic rocks show significant enrich-
ments in large ion lithophile elements (LILE) and LREE
and a pronounced Pb spike (Figs 6 and 7a). Except for
the MHY samples, which have relatively smooth trace-
element patterns, all the N'TVZ volcanic rocks have distinct
high field strength element (HFSE; i.e. Nb, Ta and Ti)
troughs in their patterns. The TLS magmas have the
highest LILE contents, with Rb concentrations up to
2500 ppm, which is the highest reported value for terres-
trial rocks (Chung et al, 20015). High LILE and K
contents suggest that phlogopite may be present in the

mantle source of the TLS magmas (Chung et al., 20015).
The most mafic NTVZ volcanic rocks also exhibit
systematic enrichment in LILE and LREE from SBS in
the NE to TLS in the SW (Fig. 7a), paralleling the spatial
variation shown by major-element compositions.
Notably, the MHY magmas do not show HFSE
depletion but they show positive Pb spikes in the trace-
element plots (Fig. 7b). Overall the trace-element patterns
of the MHY magmas are similar to those of Miocene
Taiwan intra-plate basalts (MTIB) in northwestern Tai-
wan (Chung et al., 1994, 1995q) although with lower
LILE and LREE abundances (Fig. 7b). Additionally, the
MHY trace-element patterns are almost the same as
those of high-Mg andesites from Iriomote-jima, southern
Ryukyu (Shinjo, 1999), considered to be associated
with extensional tectonic activity on the Asian

993



JOURNAL OF PETROLOGY

VOLUME 45 NUMBER 5 MAY 2004

0.5132 " T
ETO

0.5130 [ EMORB

o
=z
3
= 05128 .
°
=
() i
<
-

0.5126 [ 7]
Terrigenous
sediments |

0.5124 : : : : :

0.702 0.704 0.706 0.708
87gr/86gr

Fig. 8. Variation of ®7Sr/%Sr vs "*Nd/"Nd for the NTVZ volcanic rocks. MTIB from NW Taiwan (Chung et al., 1994, 19954), South China
Seamounts (SCS; Tu et al., 1992), back-arc magmas from the middle Okinawa Trough (MOT; Wang, 1998; Shinjo et al., 1999) and basalts from the
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variable degrees of mixing between melts derived from MHY and TLS mantle sources. The Sr isotope composition of E-MORB is used to represent
the unmodified source of the MHY (the asthenospheric mantle source; see detailed discussion in text). Ticks with a number indicate the percentage

involvement of the SCLM (the TLS source).

continental margin in the Miocene (Chung et al., 1994,
1995aq).

Nd-Sr—Pb isotopic compositions

The TLS samples have the highest Sr isotope ratios
®7Sr/%0Sr ~ 0-70540—0-70551) and lowest Nd isotope
ratios (!**Nd/"Nd ~ 0-51259-0-51268). The MHY
samples, however, have the most depleted Nd 1sotope
ratios (I¥Nd/'"MNd =~ 0-51290-0-51301) similar to
those of enriched mid-ocean ridge basalt (E-MORB;
Sun et al, 1979) and the South China Sea (SCS)
seamounts (Fig. 8; Tu ef al., 1992), but more enriched
than that of the Eastern Taiwan Ophiolite (ETO) repre-
senting the composition of the local mantle source of
depleted MORB ( Jahn, 1986; Chung & Sun, 1992).
The isotopic composition of the SCS may represent the
composition of the local mantle source of E-MORB (Tu
et al., 1992). Additionally, the MHY Nd isotope ratios are
more depleted than those of typical arc and back-arc
magmas in the nearby Central Ryukyu Arc (CRA) and
Middle Okinawa Trough (MOT; Fig. 8; Wang, 1998;
Shinjo et al., 1999). The MHY and some PCY Sr isotope
ratios are slightly elevated so that the data plot to the right
of the mantle array in the Nd—Sr isotope diagram (Fig. 8).
In terms of the Nd isotope composition, however, the
other NTVZ volcanic rocks plot between the depleted

MHY and enriched TLS samples. In the Nd—Sr isotope
diagram the overall data for the NTVZ show a distribu-
tion similar to that of the MTIB magmas, which have
been interpreted to have originated by interaction of
partial melts of ascending asthenosphere with the over-
lying sub-continental lithospheric mantle (SCLM)
beneath the western Taiwan region (Chung et al., 1994,
19954). The onshore NTVZ volcanic rocks have positive
Nd model ages based on a depleted mantle reservoir
(Tpm =~ 0-5—4:0 Ga; Table 2). The TLS magmas are
unique 1n yielding positive ages that fall in a restricted
range from 2-0 to 2-5 Ga. Other NTVZ volcanic rocks,
which might have been the product of mixing of partial
melts of different mantle source components, yield nega-
tive Nd model ages (not shown in Table 2).

The NTVZ volcanic rocks have high 27Pb/?*Ph and
208Ph/20%Ph at a given 2°°Ph/2%*Pb ratio (Fig. 9), and all
lie above the Northern Hemisphere Reference Line
(NHRL) of Hart (1984), consistent with the typical Pb
isotopic characteristics of mantle-derived magmas in
nearby regions (i.e. ETO, SCS, MOT and MTIB; see
Chung ¢t al., 20014, and reference therein). The NTVZ
data define a linear trend between the ETO and Ruykyu
subducted sediment values (Sun, 1980). However, the
NTVZ volcanic rocks show a restricted range in comparison
with nearby magmatic provinces, and most of them plot
within the SCS field (Fig. 9). Remarkably, unlike the
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are the same as in Fig. 8.

major- and trace-element compositions, the Sr—Nd—Pb
isotopic compositions of the NTVZ volcanic rocks do not
show any systematic NE to SW variation.

DISCUSSION

In the following sections we consider specific aspects of
the geochemical characteristics of the NTVZ volcanic
rocks including spatial and temporal variations, the man-
tle source components involved in melt generation, and
degrees of partial melting. To minimize the effects of
fractional crystallization, the volcanic rocks from the
KLVG [which are all intermediate to silicic in composi-
tion (S109 ~ 55—58 wt %)] are excluded and only mafic
rocks (5109 <54 wt %) are considered. Crustal contam-
Ination may be an important process in the petrogenesis
of the volcanic rocks from the southwestern part of the
NTVZ. However, as shown by a plot of ”Sr/#°Sr vs SiO,
(Fig. 10a), it does not appear to have a major influence on
the 1sotopic characteristics of the NTVZ volcanic rocks.
In Fig. 10a the mixing line between the average composition
of the Taiwan upper crust and the MO'T basalt (assumed
to have a similar mantle source to the NTVZ; see

subsequent discussion) defines a steep slope, distinct
from the variation trends for the individual volcanic fields
in the NTVZ.

Spatial and temporal geochemical variation
in magma compositions

The spatial geochemical variation from NE to SW in the
NTVZ volcanic rocks, expressed as an increase in KoO
content, reduction in SiOy content, and LILE and LREE
enrichment (Figs 3 and 7a), suggests increasing involve-
ment of an enriched mantle source component or
decreasing degrees of partial melting in the petrogenesis
of the most primitive mafic magmas. In terms of the
Sr—Nd—Pb isotope compositions (Figs 8 and 9), however,
they do not show any systematic spatial variation. For
instance, the KYS magmas have the second highest
contents of KoO, LILE and LREE among the NTVZ
(lower only than the highest TLS magmas; Figs 5, 6
and 7a), whereas they have relatively higher Nd and
lower Sr isotope ratios compared with the other NTVZ
volcanic rocks (Fig. 8). Thus, the Nd—Sr isotope composi-
tion of the NTVZ volcanic rocks does not support a
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NTVZ volcanic rocks. Continuous lines are model curves for partial melting of enriched MORB-source mantle, estimated from basalts in MOT
(Wang, 1998), with spinel-facies and garnet-facies mineralogy. Ticks with a number represent the degree of partial melting. Values used in modelling
are shown in Table 3. The assumed melting model is non-modal batch melting. It should be noted that variation in La/Yb for the NTVZ may result
from change in the degree of partial melting. The composition of primitive mantle (Sun & McDonough, 1989) is shown for comparison. (c) La/Yb vs
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logarithmic scale, the distance of the TLS is unity. (d) Eruption ages vs '**Nd/!*Nd for the NTVZ volcanic rocks.

southwesterly increasing involvement of an enriched
source component.

The La/Yb ratios in the NTVZ mafic rocks increase
with La concentration (Fig. 10b) and also with NE to SW
progression (Fig. 10c). This increase in the La/Yb ratios
could not result from increased involvement of an
enriched mantle source component because there is no
supporting evidence from the Nd—Sr—Pb isotope composi-
tions. The La/Yb variation trend plots within that
defined by partial melting of a local enriched MORB
mantle source estimated for the MOT in the garnet and
spinel facies (Fig. 10b; Table 3) and is not controlled by
amount of the residual garnet. Consequently, the degree
of partial melting in the NTVZ mantle source may play
the dominant role in this chemical variation.

The geochemical characteristics of the NTVZ volcanic
rocks show not only a spatial variation but also a change

with eruption age. Older (~2-8—2-6 Ma) volcanic rocks
from the SBS and MHY are low-K (Fig. 3a), followed
by the dominantly calc-alkaline series of the PCY
and TTVG (~2:1-0-2Ma), then finally by the recent
(<0-2 Ma) high-K to shoshonitic volcanism of the KBS,
KYS and TLS. The earliest SBS and MHY magmas
have the lowest LILE and LREE abundances, whereas
the youngest KYS and TLS magmas are extremely
enriched in LILE and LREE. The PCY and TTVG
magmas erupted at an intermediate time and show tran-
sitional abundances of the trace elements (Fig. 7a). The
MSNd/"Nd ratios of the earliest SBS and MHY mag-
mas extend up to 0-51301; however, the youngest TLS
magmas have the lowest "**Nd/"**Nd ratio of 0-51260.
Figure 10d shows that the highest Nd isotopic ratios
occur in the earlier NTVZ magmas, and vice versa.
These data indicate that in the mantle source region an
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Table 3: Values used in modelling the degree
of partial melting

Spinel peridotite Garnet peridotite

Source Melting Source Melting
mode (X) mode (Pi) mode (X) mode (Pi)
Ol 0-53 -0-4 0-6 0-1
Opx 0-27 0-3 0-2 0-18
Cpx 0-17 09 0-1 0-3
Spinel 0-03 0-2
Garnet 01 0-42
Ref. 1 2 1 2
Bulk D Melt Bulk D Melt Estimated
mode (P) mode (P) E-MORB
mantle conc.
Nb 0-0026 0-0109 0-0025 0-0074 05
La 0-0101 0-0496 0-0062 0-0171 0-74
Tb 0-0772 0-3976 0-1660 0-6373 0:15
Yb 0-0962 0-3897 0-7050 2-8262 0-67
Ref. 3 3 4

1, Johnson (1998); 2, Kelemen et al. (1993); 3, Pearce &
Parkinson (1993) and Halliday et a/. (1995); 4, estimated
from basalts in Middle Okinawa Trough (MOT; Wang,
1998; Shinjo et al., 1999) assuming the degree of partial
melting is 15%.

enriched component became more important in the gen-
eration of the younger NTVZ magmas. In summary, the
spatial variation of the NTVZ volcanic rocks reflects
differences in the degrees of partial melting, whereas
their isotopic change with time suggests changes in
compositions of the mantle source components beneath
the NTVZ.

Mantle source components

The asthenospheric mantle and subcontinental lLithospheric
mantle (SCLM) source components

The MHY and TLS magmas are the most two primitive
melts in the NTVZ, which might shed light on the mantle
source components. The TLS magmas are highly
magnesian (MgO ~ 15 wt %; Mg number ~ 80—83) and
potassic (KoO =~ 5 wt %; KoO/Na,O ~ 1-6—3-0) with
enriched LILE and LREE contents but relatively low
basaltic components (ie. AlbOs ~ 12 wt %, total
FeoO3 ~ 7-5 wt % and CaO =~ 7-5 wt %). They have
the lowest Nd and highest Sr isotopic ratios among the
NTVZ. Their overall geochemical characteristics are
comparable with those of the Group I ultrapotassic
rocks defined by Foley et al. (1987), such as orogenic

GEODYNAMIC EVOLUTION OF NORTHERN TAIWAN

lamproites from central Italy, Spain and Tibet. On this
basis, Chung et al. (20015) suggested that the TLS mag-
mas resulted from partial melting of a phlogopite-bearing
harzburgitic source in the SCLM that underwent a recent
metasomatism by subduction-derived fluids. Thus, an
enriched SCLM 1is one of the potential mantle source
components for the NTVZ volcanic rocks. The TLS Nd
model ages also strongly suggest an SCLM origin. Nd
model ages ranging from 2-0 to 2-5 Ga are consistent with
Re—Os model ages for sulphides in peridotite mantle
xenoliths entrained by the MTIB (7gp ~ 1:9~2-3 Ga;
Wang et al., 2003) indicating the presence of Proterozoic
SCLM domains beneath northern Taiwan. On the other
hand, the MHY magmas have high MgO contents
(=~ 5:9—8-1 wt %, Mg number ~ 0-6) relative to SiOq
(~52-8—54-5 wt %), with moderate enrichment in LILE
and LREE but no apparent HFSE depletion (Fig. 7b).
They have high basaltic components (ie. CaO =
7-7-8-5 wt %, total FeoO3 ~ 10-2—11-8 wt % and
TiOy =~ 1-4—1-8 wt %) reflecting a fertile mantle source.
Although their elevated S104 contents ( ~ 52-8—54-5 wt %)
could indicate fractional crystallization, the high-Mg
characteristics of the MHY magmas suggest a primitive
nature for these silica-saturated magmas (Wang e/ al.,
2002). These high-Mg basaltic andesites have the highest
Nd isotope ratios and relatively elevated Sr isotopic
ratios. The geochemical characteristics of the MHY
magmas are similar to those of the MTIB magmas in
northwestern Taiwan (Chung et al, 1994, 19954) and
almost the same as those of high-Mg andesites from
Iriomote-jima, southern Ryukyus (Shinjo, 1999; Fig. 7b);
both are considered to be examples of intra-plate
volcanism caused by extensional tectonic activity on
the Asian continental margin in the Miocene. Similar to the
most depleted SCS and NTIB samples (Tu et al., 1992;
Chung et al.,, 1994, 19954), the MHY lavas have high
Nd isotopic ratios ("*Nd/!"*Nd ~ 0-51290-0-51301),
which suggest a similar mantle source to the local
enriched asthenospheric mantle. This source is not the
same as the SCLM that produced the TLS magmas. It is
also difficult to ascribe the MHY magmas to an SCLM
source because such a source with a Nd isotopic ratio of
up to ~0-51301 is probably too refractory to produce the
high degree of partial melting required for the MHY
magmas (Fig. 10b). Thus, Wang et al. (2002) suggested
that the MHY magmas were derived from an
asthenospheric mantle source with E-MORB character-
istics. The high Sr isotopic ratios (¥’Sr/8%°Sr =
0-70438—-0-70453; Wang et al., 2002) of the MHY mag-
mas are inferred to be derived by fluxing of aqueous slab
fluids with no sedimentary components into the mantle
source region. This process is analogous to that suggested
for the petrogenesis of some island arc tholeiites in the
South Sandwich and the Izu—Bonin—Mariana arcs (e.g.
Pearce et al., 1995; Taylor & Nesbitt, 1998).
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Fig. 11. (a) "®Nd/"""Nd vs 2%Ph/?*Pb for the NTVZ volcanic rocks. A sedimentary component is revealed in the mantle source region of the
NTVZ magmas. Data sources are the same as in Figs 8 and 9. (b) 87 Sr/#Sr vs ¥ Nd/!*Nd for the NTVZ volcanic rocks showing the composition of
the metasomatized SCLM. Mixing the average value of the isotope composition of xenoliths from Minxi, southeastern China (Tatsumoto et al.,
1992), which are considered to represent the original SCLM beneath Taiwan, with 3% subducted terrigenous sediments can produce the isotope

composition of the TLS magmas.

Subduction components

The inferred mantle source components for the NTVZ
magmas, the SCLM and the asthenospheric mantle, are
both interpreted to be metasomatized by subduction
components. In terms of Sr—Nd—Pb isotope composi-
tions (Figs 8, 9 and 11a), the involvement of a sedimentary
component in the mantle source region for the NTVZ
magmas is strongly indicated. Using mantle xenoliths
entrained within the Miocene intra-plate basalts in north-
western Taiwan and southeastern China as samples of
the SCLM with no recent subduction metasomatism,

mixing calculations based on their Nd—Sr isotope
compositions show that 3% subducted sediments
would need to be added to the unmetasomatized
SCLM to vyield a possible source for the TLS magmas
(Table 4; Fig. 11b). A depleted mantle source infiltrated
by varying amounts of sediment-derived melts may
explain the compositional trend for the NTVZ magmas
in the Nd—Sr and Pb—Pb isotope diagrams (Figs 8
and 9). However, there is no systematic Sr—Nd—Pb
1sotopic variation within the NTVZ distribution parallel-
ing the present-day Ryukyu Trench and a variable
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Table 4: Values used in mixing calculation between mantle source components

Nd (ppm) Sr (ppm) Nd/4Nd 875r/80 gy Nb/U Ce/Pb Ref.
E-MORB (P-ETO) 9-82 0-51309 461 25 1
Slab-derived fluid 10-00 0-51320 0-155 0-1125 2
Terrigenous sediments 33:00 185 0-51202 0-71300 8-93 32 3
Mantle xenoliths (av.) 0-98 27 0-51320 0-70355 4
TLS (av.) 24-24 705 0-51265 0-70545
MHY (av.) 8.72 210 0-51296 0-70308* 5

1, Sun et al. (1979), Sun (1980) and Jahn (1986); 2, Tatsumi and Kogiso (1997) and Ayers (1998); 3, Lan et al. (1990);
4, Tatsumoto et al. (1992); 5, *using E-MORB values (Sun et al., 1979) (see text for explanation).
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Fig. 12. Nb/La vs Ba/Rb for the NTVZ volcanic rocks. Values of N-MORB (normal MORB), E-MORB and OIB are from Sun & McDonough

(1989). Other data sources are the same as in Figs 8 and 9.

sediment flux into the mantle source is difficult to con-
ceive. In addition, the high Nd and Sr isotopic ratios for
the MHY magmas and specific incompatible element
ratios in the TLS magmas, e.g. Nb/U =~ 0-8, Ce/Pb
~ 2, Rb/Cs =~ 8 and Ba/Rb =~ 1, are not consistent
with simple source sediment contamination. Chung et al.
(20014) suggested that another type of non-magmatic
enrichment is required. On the basis of mineral—aqueous
aqueous fluid experiments (Keppler, 1996; Tatsumi &
Kogiso, 1997; Ayers, 1998), we suggest this enrichment
agent to be a hydrous fluid derived from the subducting
slab. The distinction between sediment melt and slab-
derived fluid is clearly shown by a Nb/La vs Ba/Rb plot
(Fig. 12).

Whereas the MHY magmas, with their distinct
E-MORB affinity (Nb/La >1), reflect an origin from
an asthenospheric source, the TLS and other NTVZ
volcanic rocks with Nb/La <1 can be interpreted to be
derived from an SCLM altered by subduction-related
metasomatism. The TLS magmas have extremely low
Ba/Rb ratios, which indicate fluid-dominated meta-
somatism of the source rather than sediment melting as
shown by the other NTVZ volcanic rocks. As the slab-
derived fluid has similar **Nd/!"**Nd ratios to MORB
but with unique specific trace-element ratios, and
the sediment melt displays lower *3Nd/!**Nd ratios
with different trace-element ratios, plots of Nb/U and
Ce/Pb vs ""Nd/!"Nd can discriminate the extent of
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Fig. 13. Nb/U (a) and Ce/Pb (b) vs "*Nd/"*Nd for the NTVZ volcanic rocks. Data for enriched-type ETO (P-ETO) are from Sun et al. (1979),
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Table 4. In comparison with the TLS lavas, which plot close to the mixing curve, most NTVZ rocks plot between the mixing curve and an E-MORB

mantle source.

involvement of both subduction components in the meta-
somatism (Table 4; Fig. 13).

The average composition of the continental sediments
on Taiwan was chosen to represent that of the subducted
terrigenous sediments (Lan et al, 1990) because of the
active NW subduction of the Philippine Sea plate along
the eastern margin of the Taiwan orogen. Compositions
for the slab-derived fluid were taken from Tatsumi &
Kogiso (1997) and Ayers (1998). Using P-type (enriched)
ETO as a starting material representing local enriched
MORB mantle source unmodified by recent subduction
metasomatism, mixing calculations show that all the

NTVZ volcanic rocks plot along a mixing trend between
the P-ETO and TLS (Fig. 13). A fluid-dominated meta-
somatism coupled with a 20—30% contribution from
average terrigenous sediment is also shown in the TLS
mantle source region that lies close to the mixing line
between the average terrigenous sediment and the slab-
derived fluid. The fluid-dominated metasomatism may
have resulted in a phlogopite-bearing harzburgitic
mantle (Wyllie & Sekine, 1982). Such a mantle has a
substantially lower solidus temperature than refractory
SCLM, and could be preferentially partially melted during
the initial stages of thermal perturbation owing to extension.
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Other evidence for fluid-dominated metasomatism of
the mantle source might come from generation of high-Al
basalts in the NTVZ. High-Al basalts have been consid-
ered to be primary melts from large degrees (~50—60%)
of partial melting of eclogites in subducting plates (e.g.
Brophy & Marsh, 1986; Myers e al., 1986). However,
considering the difficulty of deriving large-degree partial
melts from the old and cold subducting Philippine plate
(~45Ma) in the Ryukyu subduction system, high-Al
basalts in the NTVZ are most likely to be the result
of fractional crystallization rather than representing
primary melts. Alternatively, Gaetani et al. (1993) pointed
out that the presence of water in the mantle wedge above
a subduction zone can significantly alter the composi-
tional path followed by residual liquids, and modify the
types and compositions of crystals that accumulate at the
site of cooling. Accordingly, under hydrous conditions,
early crystallization of plagioclase is suppressed so that
aluminium contents in residual liquids increase to yield
high-Al basalts (Fig. 14a). Figure 14b shows that most
of the NTVZ volcanic rocks lie along the olivine—
clinopyroxene cotectic for hydrous crystallization. This
suggests that their mantle source region might be
hydrous. The SBS lavas, all high-Al basalts, plot closest
to the olivine—clinopyroxene—plagioclase ternary eutec-
tic, indicating that high-Al basalts in the NTVZ are
not primary melts but have undergone some fractional
crystallization.

In comparison with the MTIB in northwestern Taiwan
erupted prior to the Taiwan arc—continent collision
(Chen, 1990; Chung et al., 1995b), the NTVZ magmas
with subduction-modified geochemical characteristics

suggest that the upper mantle domain underwent meta-
somatism related to subduction zone processes during the
buildup of the NTMB. Considering the tectonic evolu-
tion of Taiwan region since arc—continent collision at
~10Ma (e.g. Teng, 1990), the Ryukyu subduction
system is the only one that approached the northern
Taiwan region and was most likely to cause the required
metasomatism. Most NTVZ volcanic rocks having
geologically meaningless negative Nd model ages may
also result from this recent metasomatism.

The mixing of mantle source components and partial
melting conditions

The mixing trend in Fig. 13 also suggests that mixing of
partial melts of enriched asthenospheric mantle and sub-
duction-metasomatized SCLM could explain the geo-
chemical characteristics of the NTVZ volcanic rocks.
Although the MHY magmas have lower values than the
P-ETO, they still plot at the other end of the mixing trend
(Fig. 13a). The MHY mantle source might have been
fluxed by slab-derived fluid but not sediment melts, so
their Ce/Pb ratios are much lower (Fig. 13b). The effect
from the slab-derived fluid is not clear for Nb/U prob-
ably because the MHY magmas have higher Nb contents
similar to E-MORB. A similar mixing trend is observed
in the Nd—Sr isotope diagram (Fig. 8), in which the other
NTVZ volcanic rocks lie along a mixing trend between
the depleted MHY and enriched TLS mantle sources
despite the elevated Sr isotopic ratios of the MHY mag-
mas. A simple source sediment contamination model
is not preferred because variable sediment flux in the
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NTVZ mantle sources unrelated to NTVZ distribution
would be highly unlikely to lead to systematic isotopic
variation among the NTVZ. Alternatively, we propose
that variable mixing of melts from the depleted astheno-
spheric mantle at the site of formation of the MHY
magmas, and the subduction-metasomatized SCLM
where the TLS magmas formed could satisfy most of
the geochemical characteristics of the NTVZ magmas.
The proportions of the melts from the metasomatized
SCLM mixing with asthenospheric melts can be calcu-
lated based on the NTVZ Nd—Sr isotopic ratios:
12—17% for the SBS, ~20% for the KBS, ~13% for
the PCY, ~30% for the TTVG and ~20% for the KYS,
respectively (Fig. 8), using compositions of the MHY and
TLS magmas as the two end-members. In the calcula-
tion, the most enriched Sr isotope value of E-MORB
(®7Sr/%Sr = 0-70308; Sun et al., 1979) instead of that of
the MHY magmas was used because the MHY magmas
have elevated Sr isotope ratios as a result of subduction-
fluid flux. The degree of partial melting also plays an
mmportant role in controlling the spatial geochemical
variation among the NTVZ, which the simple source
sediment contamination model can not decipher.

The mantle xenoliths entrained within the MTIB are
dominantly refractory harzburgites (Yang et al., 1987), so
this part of the SCLM is not a productive magma source.
Whereas the fluid-dominated metasomatism substantially
lowers the solidus temperature of the refractory SCLM,
the TLS magmas, indicative of the most fluid-dominated
metasomatized SCLM source, still show extremely low
degrees of partial melting. Using the Batan sub-arc
phlogopite-bearing harzburgites from the Philippines
(Maury et al., 1992) (which are the analogue of the TLS
mantle source and generated similarly high-K magmas)
as the starting source material in the graphical concen-
tration ratio (CR) method of Maaloe (1994), <2% of
partial melting is estimated for the TLS magmas
(Table 3; Fig. 15). Thus, except for the MHY and TLS
magmas, which are separately derived from the astheno-
spheric and lithospheric mantle, most of the NTVZ
magmas are the products of variable degrees of partial
melting of asthenospheric mantle, variously ‘contaminated’
by melts from the metasomatized SCLM during ascent.

The degrees of partial melting for the NTVZ can be
evaluated by the CR method using an enriched MORB
mantle source as the starting source material, which is
estimated from basalts in the MOT with a subduction
flux similar to that for the MHY magmas (Table 3;
Fig. 15). We suggest that the parental magmas of the
offshore volcanic fields in the NTVZ were generated
by larger degrees of partial melting (8—20%) than the
onshore fields (2—5%). A southwestward decrease in
degree of partial melting is also revealed, which is evident
in the plot using dominantly mantle-derived elements or
conservative elements (e.g. Nb and Yb; Pearce & Parkinson,
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1993; Pearce & Peate, 1995) without significant sub-
duction contribution (Fig. 15b). The degrees of partial
melting of the asthenospheric source may depend on
both the overlying lithospheric thickness (the minimum
depth at which the melting occurred) and the specific
mantle domain composition. The latter cause is not pre-
ferred here as the isotopic characteristics of the NTVZ
magmas are decoupled from the inferred degree of partial
melting. In addition, the overlying lithospheric thickness
also determines the extent to which the metasomatized
SCLM contaminated the asthenospheric melts. In the
NTVZ, the spatial and temporal changes in magma
composition, reflecting lithosphere architecture and
history within a coherent tectonic terrane, allow some
important inferences to be made about the geodynamic
evolution of this complex region (see next section), and
also about the variable nature of the lithosphere traversed
by the mantle-derived mafic magmas in time and space.

Petrogenetic model

To test our hypothesis, modelling of trace-element
concentrations in the mantle sources and melts was carried
out. Non-modal batch melting was assumed and the
compositions of the mantle sources for the MHY and
TLS magmas were used as starting points. As Wang
et al. (2002) suggested that asthenospheric mantle
ascended to ~60—70km depth to generate the MHY
magmas at ~2-6 Ma, we assume that all melts, including
the TLS melts from the SCLM, occur in the garnet
stabilizing field of the mantle. Using the trace-element
partition coefficients of Halliday et al. (1995), Johnson
(1998) and Schmidt et al. (1999), the trace-element com-
positions of the MHY and TLS mantle sources were
calculated from the average lava compositions using the
estimated degrees of partial melting shown in Fig. 15 (8%
for the MHY and 2% for the TLS), and appropriate
source and melt modes (garnet lherzolites for the MHY
and phlogopite—garnet harzburgites for the TLS; see
Table 5 for details). Having thus established the trace-
element compositions of the enriched asthenospheric and
metasomatized SCLM source components, the trace-
element composition of the asthenospheric melts can be
derived for the individual NTVZ volcanic fields. Finally,
a simple mixing calculation based on the estimated com-
positions of the asthenospheric melts and those from the
metasomatized SCLM, using the proportions shown in
Fig. 8 for the individual NTVZ volcanic fields, provides
their model trace-element compositions. The model
trace-element compositions are plotted in Fig. 16
compared with the actual compositions of the NTVZ
magmas (except for the MHY and TLS magmas used
as end-members). Although the model compositions for
the NTVZ do not perfectly coincide with their actual
values in Iig. 16, the geochemical variation trends of
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Fig. 15. Variation of (a) Th/Yb vs La/Yb and (b) Nb vs Yb for the NTVZ volcanic rocks. Bold continuous lines are model curves for partial melting

of the enriched MORB mantle, estimated from basalts in MOT (Wang,

1998), with spinel-facies and garnet-facies mineralogy. Dashed lines connect

the same degree of partial melting between the two facies. Fine continuous lines are model curves for partial melting of Batan phlogopite harzburgite
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degrees of partial melting. Values used in modelling (Table 3), the melting model and distribution coefficients are the same as in Fig. 10b. The

primitive mantle (Sun & McDonough, 1989) is shown for comparison.

the NTVZ magmas are successfully modelled by this
method.

GEODYNAMIC MODEL
Wang et al. (1999) proposed that the magmatism of the

northern Taiwan volcanic zone resulted from post-
collisional extension in the NTMB since Plio-Pleistocene
times. Initiation of the NTVZ thus serves as a straight-
forward constraint for the onset of the collapse of the
NTMB. Whereas structural and seismological data
(Suppe, 1984; Lee & Wang, 1988; Yeh et al, 1991)

provide lines of evidence for post-collisional extension in
the Quaternary, a geodynamic model for the tectonic
evolution accommodating seismological and geophysical
data 1s still unavailable. This is especially the case when
the NTVZ is considered not to be part of the Ryukyu
Arc. Using analogies from other localities of Tertiary
post-collisional magmatism, e.g. Tibet, China (e.g.
Turner e al, 1996; Maheo e al, 2002) and the
Betic—Alboran domain of SE Spain (Turner e al.,
1999), we suggest a geodynamic model for the post-colli-
sional extension based on our interpretation of the

NTVZ geochemical data.
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Table 5: Values used n trace-element modelling

Garnet peridotite Phlogopite—garnet harzburgite

Source Melting Source Melting
mode (X) mode (Pi) mode (X) mode (Pi)
Ol 0-6 0-1 0-6 0-05
Opx 0-2 0-18 0-2 0-32
Cpx 0-1 0-3
Garnet 0-1 0-42 0-1 0-4
Phl 0-1 0-23
Ref. 1 2
Bulk D Melt Bulk D Melt MHY TLS
mode (P) mode (P) (av.) (av.)
Nb 0-0025 0-0074 0-0081 0-0199 5.98 16-12
La 0-0062 0-0171 0-0011 0-0020 5-58 24-68
Sm 0-0503 0-1742 0-0239 0-0906 2-96 4.59
Zr 0-0490 0-1643 0-0360 0-1138 7886 117-51
Y 0-2549 0-9845 0-2109 0-8121 19-71 14-61
Yb 0-7050 2-8262 0-6650 2-5803 1.62 132
Ref. 3 1,34

1, Johnson (1998); 2, Kelemen et a/. (1993); 3, Halliday et al.
(1995); 4, Schmidt et al. (1999).

Models involving a retreating subduction zone (e.g.
Lonergan & White, 1996), slab detachment or break-off
(e.g. Davies & von Blankenburg, 1995), delamination
(e.g. Bird, 1979) and convective removal of the litho-
sphere (e.g. Houseman et al., 1981) have been used to
explain post-collisional extension. All these processes
cause upwelling of the asthenosphere and this will
perturb the original thermal gradient. Consequences
that follow are magma generation and sequential exten-
sion. Combining the magmatic history with other
constraints based on the tectonic evolution of an area
may lead to a more robust dynamic model (e.g. Turner
et al., 1999).

Relative to the present-day location of Taiwan, the
mitial arc—continent collision started in the NE at
~10Ma and propagated southwestward corresponding
to the relative motion between the Philippine and
Eurasian plates (Suppe, 1984). According to the sedimen-
tary record (Teng, 1990), the collision activity was most
intensive at ~6—5Ma, resulting in an uplift of nearly
4000m above sea level (Fig. 1). Meanwhile, both the
arc and associated back-arc volcanism in the middle
part of Ryukyu subduction experienced a hiatus in the
period of 6—2 Ma (Letouzey & Kimura, 1986; Kamata &
Kodama, 1994; Park, 1996). This indicates a feedback
relationship between the Taiwan collision and the
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development of the part of the Ryukyu subduction system
near northern Taiwan.

Severe compressional forces near the northern Taiwan
region probably stalled the Philippine Sea plate subduc-
tion so this slab could not encroach beneath the region.
Consequently, the Ryukyu subduction re-established and
re-generated arc and back-arc volcanism at a later stage.
Two phases of the Okinawa Trough opening at 10—6 and
~2 Ma (Miki, 1995; Sibuet ¢t al, 1998) may respond to
the re-establishment of the Ryukyu subduction system.
The thickened lithosphere caused by arc—continent colli-
sion would have also prevented western propagation of
the Ryukyu subduction system (Fig. 17a). This model
differs from previous ones suggesting that the Ryukyu
subduction zone was able to continue developing in the
northern Taiwan region (Chen, 1990; Teng et al., 1992;
Teng, 1996).

Several lines of evidence also support the interpretation
that the NTVZ is unlikely to be part of the Ryukyu Arc.
They include a horizontal displacement (of about
150km) from the western end of the actual Ryukyu
volcanic arc (Iriomotejima; Fig. 1) to the NTVZ, and
the fact that the north-dipping Benioff zone of the sub-
ducting Philippine Sea plate is now sitting ~200—250 km
beneath the NTVZ (Eguchi & Uyeda, 1983; Kao ¢t al.,
1998) compared with ~100km for the normal Ryukyu
Arc. There are apparent differences in the duration of
volcanism between the NTVZ and the Ryukyu Arc, as
the latter became dormant in the earliest Pliocene
(Shinjo, 1998). In terms of their geochemical character-
istics, if the NTVZ magmas represent arc volcanism,
their systematic along-arc (spatial) geochemical variations
(reflecting systematic variable degrees of partial melting
in their mantle source) should represent a typical cross-
arc variation for the arc volcanism. This is not supported
by the actual spatial distribution of the NTVZ paralleling
the Ryukyu Trench. Moreover, the along-arc variation is
also difficult to ascribe because there is no apparent
spatial variation in the subducting plate, 1.e. sediment
flux etc., if the NTVZ is treated as arc-related volcanism.
As there was no active subduction near northern Taiwan
during that time, tectonic models involving a retreating
subduction zone and slab detachment or break-off
models cannot be realistic for the NTVZ. However,
metasomatism by the Ryukyu subduction zone could
still affect upper-mantle domains beneath northern
Taiwan because of the lateral migration of subduction
components (Fig. 17a).

The geochemical characteristics of the MHY
asthenospheric melts indicate that significant upwelling
of asthenosphere to 60—70 km depth has occurred since
~2-6 Ma (Wang et al., 2002) at the time of initiation of
the NTVZ activity (Fig. 17b). Taking account of the
continental crustal thickness of ~30km in northern
Taiwan (Yeh et al., 1989), emplacement of the MHY magmas
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Fig. 16. La/Yb vs Nb/Y (a) and Nb/Zr vs Sm/Y (b) diagrams showing similarities between model and actual ratios in the NTVZ volcanic rocks.

suggests that part of the SCLM was removed or thinned
to let the underlying asthenosphere upwell to sufficiently
shallow depths for decompressional melting to occur.
Because the collision started to the NE of present-day
Taiwan close to the MHY, this is inferred to have been
the region of thickest lithosphere, and most likely to be
removed subsequently, similar to the scenario described
for Tibetan post-collisional magmatism by Turner et al.
(1996). Actually the NTVZ distribution along the under-
lying northern Taiwan metamorphic basement, which
represents parts of the Taiwan orogen and is character-
ized by folded and tilted Tertiary strata resulting from the
collision (Fig. 1; Wageman et al., 1970; also named the
southern Taiwan—Sinzi Folded Zone), strongly suggests a
link between generation of the NTVZ and collapse of
the Taiwan orogen. Seismic profiles show that offshore

northeastern Taiwan has been characterized by high-
angle normal faults, which have been reactivated from
pre-existing, collision-induced reverse faults, since late
Pliocene times (Hsiao et al., 1998; Kong et al., 2000;
Fig. 1). On this basis, Teng (1996) proposed that exten-
sional collapse of the NTMB took place in Plio-Pleistocene
times. The uplift history revealed by the Taiwan base-
ment rocks and sedimentary accumulation in the fore-
land basins suggests that there was a major acceleration
in the rate of uplift of the arc—continent collision zone
and an increase in the sediment accumulation rate at
~3—2-5Ma, following steady-state uplift since ~8Ma
(Teng, 1990, fig. 8). This supports a model of rapid uplift
after parts of the SCLM were removed or attenuated.
The SBS, TTVG and later PCY (~2-1 Ma) magmas
show HFSE depletion (Fig. 7a), indicating a likely greater
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Fig. 17. Schematic representation of the proposed geodynamic model for the NTVZ and related tectonic evolution of the area from ~6 Ma to the
present. NTMB, northern Taiwan mountain belt. Volcanoes in different colours indicate different volcanic fields (purple—the Luzon Arc; pink—the
Ryukyu Arc; red—the NTVZ); the plumes from volcanoes suggest that the volcanoes are active. (a) The Luzon Arc colliding with the Asian continent
formed a thickened SCLM, which prevented the Philippine Sea plate from subducting beneath the northern Taiwan region. Consequently, the
Ryukyu Arc and the Okinawa Trough stalled westward propagation. Black dotted line marks the present position of Taiwan. The arc—continent
collision started in the NE. (b) As soon as parts of the SCLM were ‘removed’, asthenospheric mantle upwelled to shallower depth then melted to
generate the initial NTVZ volcanism. (c) After parts of the SCLM were ‘removed’, the Philippine Sea plate started its westward propagation with
reopening of the Okinawa Trough towards NE Taiwan to form the SPOT (southernmost part of Okinawa Trough). (d) The SPOT reached to
onshore NE Taiwan as the Philippine Sea plate subducted beneath the northern Taiwan region. The subsequent arc volcanism, the western
extension of the Ryukyu Arc, was generated in the SPOT, which is located ~80—100km above the Benioff zone of the Philippine Sea plate.

nvolvement of subduction components in the metasoma-
tized asthenospheric mantle and/or the SCLM. The SBS
and PCY magmas, both offshore and close to the MHY
field, are also low-K and calc-alkalic magmas produced
by higher degrees of partial melting and with higher
MNA/"Nd  (~0-51284—0-51289 and 0-51289—
0-51297, respectively). The TTVG magmas are calc-
alkaline and have lower "SNd/"Nd (~0-51268—
0-51280). The correlation might suggest that upwelling
of the asthenosphere was shallower offshore, so that
higher-degree asthenospheric melts were generated with
less contamination by the overlying metasomatized
SCLM, and vice versa (Fig. 17b). As a result of the
continuing collision in central and southern Taiwan,
post-collisional extension induced by asthenosphere
upwelling diminished southwestward.

Magmatism during the initial stage of NTVZ activity
was dominantly sourced from the asthenospheric mantle
(i.e. the MHY, SBS and PCY). These magmas represent
higher degrees of partial melting (8—20%) consistent with
that predicted from decompressional melting of the
ascending asthenosphere up to ~60-—70km depth
(10—20%). Some extensive late Pliocene—Quaternary
subsurface magmatic fields distributed within the Taiwan
orogen basement have been identified on seismic profiles
(Fig. 1; Sun & Hsu, 1991; Hsiao ¢t al., 1998). The volume
of these subsurface volcanic fields is apparently larger
than the NTVZ although no direct age and geochemical
data for the magmatic rocks are available. However, it is
evident that large amounts of volcanic activity have
occurred offshore northeastern Taiwan since the late
Pliocene.
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After ~2-6 Ma the subducting Philippine Sea plate
resumed its westward motion to penetrate progressively
into the region beneath the NTMB because parts of
the collision-thickened lithosphere that were creating a
‘barrier’ had been removed (Fig. 17c). Meanwhile, the
Ryukyu subduction system developed its southernmost
extension corresponding to the movement of the
Philippine Sea plate. The reopening of the Okinawa
Trough started at ~2Ma after a hiatus (Letouzey &
Kimura, 1986; Park, 1996; Sibuet et al., 1998), and its
fast southwestward propagation at ~126 mm/yr reached
the I-Lan plain, in NE Taiwan (Liu, 1995) with a very
strong curvature. This part of the Okinawa Trough
[named SPOT (southernmost part of Okinawa Trough)
by Chung et al. (2000)] is structurally and geochemically
different from its central part. The SPOT back-arc
magmas are bimodal andesites and rhyolites, exhibiting
typical subduction magma-type characteristics similar
to those of the CRA and MOT magmas (Chung et al.,
2000). Compared with the MHY magmas with intra-
plate geochemical affinities, it is most likely that initial
magmatism first occurred within the NTVZ outside the
topographical Okinawa Trough, rather than within the
trough.

The NTVZ magmas erupted from 2 to 1 Ma consist
dominantly of calc-alkalic rocks and display significantly
HFSE depletion (Fig. 7a) in contrast to the earlier NTVZ
magmas with low-K characteristics. These were widely
emplaced at the PCY, KLVG and TTVG localities
(Fig. 17¢), which extend onshore from an inferred up-
welling centre offshore. Greater enrichment in LILE
and LREE than the earlier magmas suggests that the
proportion of lithospheric components was increasing
(Fig. 7a). All phenomena at this stage indicate that sub-
sequent thermal perturbation in the SCLM and the pro-
pagation of extension followed asthenospheric upwelling.

The final stages of volcanism show most activity in the
KBS, PCY, TTVG, KYS and TLS fields (Fig. 17d) with
striking geochemical variations in the magmas. The most
recent (~0-2 Ma) magmas at KBS, KYS and TLS have
high-K calc-alkaline to shoshonitic—ultrapotassic character-
istics with extreme enrichment in LILE and LREE but
HFSE depletion (Fig. 7a). The TLS magmas represent an
extreme end-member magma type indicative of small-
degree partial melts of phlogopite-bearing harzburgitic
SCLM. A series of recent volcanic arcs, about 80—100 km
above the Benioff zone of the subducting Philippine plate,
and representing the western end of the Ryukyu Arc,
were formed in the SPOT (Sibuet et al., 1998; Chung
et al., 2000). The SPOT is an atypical back-arc spreading
setting, which was formed before or at least synchron-
ously with its arc—trench counterpart (Fig. 17d; Wang
et al., 1999; Chung et al., 2000). This combination of
tectonic and magmatic processes consequently led to a
unique collision—extension—subduction context in this

GEODYNAMIC EVOLUTION OF NORTHERN TAIWAN

region. Sadeghi ¢t al. (2000) reported low-velocity anom-
alies in the uppermost mantle at a depth of 40km
beneath the northern Taiwan region, but beyond the
SPOT area, and these might be evidence for the astheno-
sphere upwelling in the NTMB.

Most models for post-collisional magmatism predict
that it should progress from potassic lithosphere-derived
melts to intra-plate asthenospheric melts with time (e.g.
Pearce et al., 1990; Turner et al., 1992, 1993, 1996; Platt
& England, 1993; Maheo et al., 2002). However, Turner
et al. (1999) reported that post-collisional magmatism in
the Betic—Alboran domain in SE Spain exhibits the
reverse progression and suggested that this could be due
to significant differences in the amount of thickened crust
in different collision zones. A general model was pro-
posed for post-collisional magmatism in Tibet where the
thickened crust (~70km) is twice normal thickness.
However, the Betic—Alboran domain may not have had
such thickened crust, so that the asthenosphere could
upwell to higher levels (e.g. less than 50—60km) after
convective removal of some of the thickened lithosphere
and thus induce decompressional melting to generate
asthenospheric melts first (Turner ez al., 1999). Thus, the
rheology of both plates in collision, the extent of the
collision and the velocity of plate convergence are impor-
tant controls on the geochemical characteristics and time
interval between the onset of collision and the generation
of post-collisional magmatism. In the northern Taiwan
region we also observe a reverse geochemical pattern for
magma suites starting with asthenospheric melts then
proceeding to lithospheric melts. The scale of the collision
in the Taiwan region is much smaller than that in Tibet,
so it is easier to document in detail the different successive
magma series within a short time span from the onset of
collision in the NTVZ, thus providing constraints for a
post-collisional magmatism in a distinctive geodynamic
domain similar to that of the Betic—Alboran domain.

CONCLUSIONS

The geochemical characteristics of the NTVZ volcanic
rocks indicate that they resulted from the upwelling of
asthenosphere in response to post-collisional extension
associated with collapse of the NTMB in Plio-Pleistocene
times. Their spatial and temporal geochemical variation
can be explained and semi-quantitatively modelled by
variations in degrees of partial melting, and in the mixing
proportions of two dominant end-member source mantle
types beneath individual magma fields, which may be
distinguished in terms of their geographical location and
age of volcanism. The spatial variation of the NTVZ
volcanic rocks largely reflects partial melting variations,
whereas the changes in isotopic composition with time
suggest changes in the compositions of the mantle source
components beneath the NTVZ.
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The dominant mantle components are the astheno-
spheric mantle and the SCLM that had undergone meta-
somatism by subduction processes associated with the
Ryukyu subduction system. The subduction-related meta-
somatism of the SCLM has geochemical characteristics
indicating the involvement of both slab-derived fluid and
sediment-derived melts that infiltrated the mantle source
region of the NTVZ during the build-up of the NTMB.
Thus, the ‘arc signatures’ evident in most of the NTVZ
volcanic rocks do not mean that the NTVZ is part of the
Ryukyu Arc, as these are not direct melts induced by
subduction processes, but extension-induced melts
formed significantly after active subduction ceased and
that were contaminated by the overlying SCLM (which
had inherited subduction components). The retreating
subduction zone and slab detachment or break-off models
are unlikely to be able to explain the generation of the
NTVZ volcanic fields.

It is suggested that the MHY melts represent astheno-
spheric melting after parts of the thickened lithosphere
had been removed (or attenuated) and asthenosphere
upwelling took place to shallow depths (~60—70km).
Subsequent emplacement of calc-alkaline magmas
indicates increasing involvement of the SCLM in the
magma generating process resulting from heating by
the newly juxtaposed hotter asthenosphere. Finally the
TLS potassic magmas erupted as a result of melting
dominantly of the metasomatized SCLM itself. The
NTVZ magma series progression is distinct from that
predicted by general models for post-collisional magma-
tism based on the Tibetan post-collisional magmatism,
but similar to that of the Betic—Alboran domain. This
may be a consequence of the different scales of these
collision zones.
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